
BIND 9 Security
(Part 3 - eBPF - extended Berkeley Packet Filter)

Carsten Strotmann and the ISC Team

All content © 2021 Internet Systems Consortium, Inc.

1

All content © 2021 Internet Systems Consortium, Inc.

Welcome

Welcome to part three of our BIND 9 security webinar
series

2 . 1

All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.

In this Webinar
The Berkeley Packet Filter
eBPF Architecture
Instrumenting the Linux Network Stack
Instrumenting BIND 9
Packet Filtering with eBPF
Hands-On lab

All content © 2021 Internet Systems Consortium, Inc.

2 . 2

All content © 2021 Internet Systems Consortium, Inc.

The Berkeley Packet Filter

3 . 1

All content © 2021 Internet Systems Consortium, Inc.

What is BPF/eBPF?
eBPF is the extended Berkeley Packet Filter
infrastructure inside the Linux kernel
eBPF is a further development of the Berkeley Packet
Filter technology
https://en.wikipedia.org/wiki/Berkeley_Packet_Filter

3 . 2

https://en.wikipedia.org/wiki/Berkeley_Packet_Filter

All content © 2021 Internet Systems Consortium, Inc.

The eBPF idea
eBPF allows the administrator to execute sandbox
programs inside the operating system kernel

eBPF is used to extend the capabilities of the kernel safely,
securely and efficiently without modifying the kernel source code
or loading kernel modules
eBPF can monitor and manipulate network packets as well as
other data inside Linux kernel
eBPF programs are not kernel modules, you don't need to be a
Kernel developer to work with eBPF

but some C programming knowledge is helpful

3 . 3

All content © 2021 Internet Systems Consortium, Inc.

eBPF

3 . 4

All content © 2021 Internet Systems Consortium, Inc.

eBPF use cases
Use cases for eBPF

Network security (advanced firewall functions)
Host security
Forensics
Fault diagnosis
Performance measurements

eBPF is available on modern Linux systems (Kernel
3.18+) and is currently being ported to the Windows
operating systems ported by Microsoft

3 . 5

All content © 2021 Internet Systems Consortium, Inc.

Origins of BPF
The original BSD Packet Filter (BPF) has been
designed by Steven McCanne and Van Jacobson at
Lawrence Berkeley Laboratory
()

BPF has been ported to almost all Unix/Linux and some non-Unix
operating systems
BPF is the base technology for some well known network sniffing
tools such as tcpdump and Wireshark

https://www.tcpdump.org/papers/bpf-usenix93.pdf

3 . 6

https://www.tcpdump.org/papers/bpf-usenix93.pdf

All content © 2021 Internet Systems Consortium, Inc.

BPF operation using tcpdump as an example
When using a BPF-enabled tool, the filter code is
compiled into bytecode for the BPF in-kernel VM and
loaded into the kernel

The operating system kernel will execute the filter program for
every network packet that traverses the network stack
Only packets that match the filter expression will be forwarded to
the userspace tool, tcpdump in this example
BPF helps limiting the amount of data that needs to be sent
between kernel and user space

3 . 7

All content © 2021 Internet Systems Consortium, Inc.

BPF operation using tcpdump as an example
tcpdump can be instructed to emit the source code

for a tcpdump filter expression
tcpdump -d port 53 and host 1.1.1.1
Warning: assuming Ethernet
(000) ldh [12]
(001) jeq #0x86dd jt 19 jf 2
(002) jeq #0x800 jt 3 jf 19
(003) ldb [23]
(004) jeq #0x84 jt 7 jf 5
(005) jeq #0x6 jt 7 jf 6
(006) jeq #0x11 jt 7 jf 19
(007) ldh [20]
(008) jset #0x1fff jt 19 jf 9
(009) ldxb 4*([14]&0xf)
(010) ldh [x + 14]
(011) jeq #0x35 jt 14 jf 12
(012) ldh [x + 16]
(013) jeq #0x35 jt 14 jf 19
(014) ld [26]
(015) jeq #0x1010101 jt 18 jf 16
(016) ld [30]
(017) jeq #0x1010101 jt 18 jf 19
(018) ret #262144
(019) ret #0

3 . 8

All content © 2021 Internet Systems Consortium, Inc.

eBPF vs. BPF
While BPF (or now called cBPF = classic BPF) filters
network packets inside the operating system kernel,
eBPF does also filter on

Kernel systemcalls
Kernel tracepoints
Kernel functions
Userspace tracepoints
Userspace functions

3 . 9

All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.

eBPF and the Linux kernel
The basic eBPF was introduced into the Linux kernel
in version 3.18

since then, most new kernel release implemented new eBPF
functions
Linux distributions might have backported eBPF functions into
older LTS kernel (Red Hat/Canonical/Suse)
Overview of eBPF functions by Linux kernel version:
https://github.com/iovisor/bcc/blob/master/docs/kernel-
versions.md

All content © 2021 Internet Systems Consortium, Inc.

3 . 10

https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md

All content © 2021 Internet Systems Consortium, Inc.

The eBPF Architecture

4 . 1

All content © 2021 Internet Systems Consortium, Inc.

The eBPF VM
eBPF programs are compiled for a virtual CPU
The code is loaded and verified in the Linux kernel
On main architectures, the eBPF code is re-compiled
into native code (Just in time compiler)

4 . 2

All content © 2021 Internet Systems Consortium, Inc.

XDP - express data path
The express data path (XDP) inside the Linux-Kernel is
an infrastructure to gain low level control over network
traffic

side-stepping the normal kernel network stack flow
eBPF programs can be loaded into the eXpress Data Path (XDP)

4 . 3

All content © 2021 Internet Systems Consortium, Inc.

XDP / eBPF hardware offloading
XDP eBPF can be loaded into different level of the
Linux kernel network stack

Offload XDP: directly into the network hardware (ASIC/FPGA,
needs support by the network hardware, for example Netronome
NIC)
Native XDP: into the network driver (low level Linux kernel code,
requires support by the driver)
Generic XDP: into the Linux kernel network stack (less
performance, but universally available)

4 . 4

All content © 2021 Internet Systems Consortium, Inc.

XDP / eBPF execution environments

4 . 5

All content © 2021 Internet Systems Consortium, Inc.

XDP functions
XDP programs can

read network packets and collect statistics
modify the content of network packets
drop selected traffic (firewall)
redirect packets to the same or other network interfaces
(switching/routing)
pass the network packet to the Linux TCP/IP stack for normal
processing

4 . 6

All content © 2021 Internet Systems Consortium, Inc.

XDP vs DDoS attack
XDP can discard unwanted traffic very early in the
network stack, defending against DDoS attacks

4 . 7

All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.

eBPF/XDP support in DNS software
 (see Webinar

) can directly
rate limit or block DNS traffic through eBPF and XDP
The Knot resolver (since version 5.2.0) can bypass the
Linux TCP/IP stack and send DNS traffic direct to the
user space process (

)

DNSdist Practical BIND 9 Management -
Session 3: Load-balancing with dnsdist

https://knot-
resolver.readthedocs.io/en/stable/daemon-bindings-
net_xdpsrv.html

All content © 2021 Internet Systems Consortium, Inc.

4 . 8

https://dnsdist.org/
https://www.youtube.com/watch?v=M2IwdUji5ps
https://knot-resolver.readthedocs.io/en/stable/daemon-bindings-net_xdpsrv.html

All content © 2021 Internet Systems Consortium, Inc.

Using eBPF

5 . 1

All content © 2021 Internet Systems Consortium, Inc.

eBPF tooling
eBPF programs can be written in many ways

Low level eBPF assembly code
High Level compiler (using LLVM): C / GO / Rust / Lua / Python …
Special "scripting" languages: bpftrace

5 . 2

All content © 2021 Internet Systems Consortium, Inc.

BCC
BCC is the BPF compiler collection

Website
BCC compiles C or Python code into eBPF programs and loads
them into the Linux kernel

https://github.com/iovisor/bcc

5 . 3

https://github.com/iovisor/bcc

All content © 2021 Internet Systems Consortium, Inc.

BCC tools

5 . 4

All content © 2021 Internet Systems Consortium, Inc.

BCC Tool examples (1/2)
Count syscalls from the BIND 9 process with
syscount

syscount-bpfcc -p `pgrep named` -i 10
Tracing syscalls, printing top 10... Ctrl+C to quit.
[07:34:19]
SYSCALL COUNT
futex 547
getpid 121
sendto 113
read 56
write 31
epoll_wait 31
openat 23
close 20
epoll_ctl 20
recvmsg 20

5 . 5

All content © 2021 Internet Systems Consortium, Inc.

BCC Tool examples (2/2)
Tracing Linux capability checks

capable-bpfcc | grep named
07:36:17 0 29378 (named) 24 CAP_SYS_RESOURCE 1
07:36:17 0 29378 (named) 24 CAP_SYS_RESOURCE 1
07:36:17 0 29378 (named) 12 CAP_NET_ADMIN 1
07:36:17 0 29378 (named) 21 CAP_SYS_ADMIN 1
07:36:17 0 29378 named 6 CAP_SETGID 1
07:36:17 0 29378 named 6 CAP_SETGID 1
07:36:17 0 29378 named 7 CAP_SETUID 1
07:36:17 109 29378 named 24 CAP_SYS_RESOURCE 1

5 . 6

All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.

bpftrace
bpftrace is a little language similar to awk or
dtrace

Website
bpftrace programs subscribe to eBPF probes and
executes a function whenever an event occurs
(systemcall, function-call)
bpftrace comes with many helper functions to
handle eBPF data structures
bpftrace allows one to write eBPF programs in a
more concise way compared to BCC

https://bpftrace.org

All content © 2021 Internet Systems Consortium, Inc.

5 . 7

https://bpftrace.org/

All content © 2021 Internet Systems Consortium, Inc.

Instrumenting the Linux Network Stack

6 . 1

All content © 2021 Internet Systems Consortium, Inc.

BCC and bpftrace tools
Literally hundreds of little eBPF programs exists to
look deep into the Linux network stack

The BCC example tools
The bpftrace examples
Examples from eBPF books

6 . 2

All content © 2021 Internet Systems Consortium, Inc.

gethostlatency
The BCC tool gethostlatency measures the latency
of client DNS name resolution through function calls
such as getaddrinfo or gethostbyname

gethostlatency-bpfcc
TIME PID COMM LATms HOST
10:21:58 19183 ping 143.22 example.org
10:22:18 19184 ssh 0.03 host.example.de
10:22:18 19184 ssh 60.59 host.example.de
10:22:35 19185 ping 23.44 isc.org
10:22:49 19186 ping 4459.72 yahoo.co.kr

6 . 3

All content © 2021 Internet Systems Consortium, Inc.

netqtop
netqtop - Summarize PPS, BPS, average size of
packets and packet counts ordered by packet sizes on
each queue of a network interface.

netqtop-bpfcc -n eth0 -i 10
Mon Nov 15 07:43:29 2021
TX
 QueueID avg_size [0, 64) [64, 512) [512, 2K) [2K, 16K) [16K, 64K)
 0 297.82 2 48 1 4 0
 Total 297.82 2 48 1 4 0

RX
 QueueID avg_size [0, 64) [64, 512) [512, 2K) [2K, 16K) [16K, 64K)
 0 70.95 43 34 0 0 0
 Total 70.95 43 34 0 0 0

6 . 4

All content © 2021 Internet Systems Consortium, Inc.

tcptracer
Tracing TCP connections showing source and
destination addresses and ports and the TCP state
(accept, connect, close)

tcptracer-bpfcc -p $(pgrep named)
Tracing TCP established connections. Ctrl-C to end.
T PID COMM IP SADDR DADDR SPORT DPORT
C 29404 isc-net-0000 4 127.0.0.1 127.0.0.1 41555 953
A 29378 isc-socket-0 4 127.0.0.1 127.0.0.1 953 41555
X 29404 isc-socket-0 4 127.0.0.1 127.0.0.1 41555 953
X 29378 isc-socket-0 4 127.0.0.1 127.0.0.1 953 41555
C 29378 isc-net-0000 4 46.101.109.138 192.33.4.12 43555 53
C 29378 isc-net-0000 4 46.101.109.138 192.33.4.12 33751 53
X 29378 isc-socket-0 4 46.101.109.138 192.33.4.12 43555 53
X 29378 isc-socket-0 4 46.101.109.138 192.33.4.12 33751 53
C 29378 isc-net-0000 4 46.101.109.138 193.0.14.129 38145 53
C 29378 isc-net-0000 4 46.101.109.138 192.33.14.30 40905 53
X 29378 isc-socket-0 4 46.101.109.138 193.0.14.129 38145 53
X 29378 isc-socket-0 4 46.101.109.138 192.33.14.30 40905 53

6 . 5

All content © 2021 Internet Systems Consortium, Inc.

tcpconnlat
Display the connection latency for outgoing TCP
based DNS queries from a BIND 9 resolver (in this
example a query for microsoft.com txt, which is
too large for 1232 byte UDP)

isc-net-0000 is the internal name of a BIND 9 thread
tcpconnlat-bpfcc
PID COMM IP SADDR DADDR DPORT LAT(ms)
29378 isc-net-0000 4 46.101.109.138 193.0.14.129 53 37.50
29378 isc-net-0000 4 46.101.109.138 192.52.178.30 53 14.01
29378 isc-net-0000 4 46.101.109.138 199.9.14.201 53 8.48
29378 isc-net-0000 4 46.101.109.138 192.42.93.30 53 1.90
29378 isc-net-0000 4 46.101.109.138 40.90.4.205 53 14.27
29378 isc-net-0000 4 46.101.109.138 199.254.48.1 53 19.21
29378 isc-net-0000 4 46.101.109.138 192.48.79.30 53 7.66
29378 isc-net-0000 4 46.101.109.138 192.41.162.30 53 7.97
29396 isc-net-0000 4 127.0.0.1 127.0.0.1 53 0.06

6 . 6

All content © 2021 Internet Systems Consortium, Inc.

udplife
A bpftrace script to trace UDP session lifespans
(DNS round trip time) with connection detail (by
Brendan Gregg, see link collection)

udplife.bt
Attaching 8 probes...
PID COMM LADDR LPORT RADDR RPORT TX_B RX_B MS
29378 isc-net-00 46.101.109.138 0 199.19.57.1 16503 48 420 268
29378 isc-net-00 46.101.109.138 0 51.75.79.143 81 49 43 13
29378 isc-net-00 46.101.109.138 0 199.6.1.52 16452 48 408 24
29378 isc-net-00 46.101.109.138 0 199.249.120.1 81 44 10 9
29378 isc-net-00 46.101.109.138 0 199.254.31.1 32891 64 30 273
29378 isc-net-00 46.101.109.138 0 65.22.6.1 32891 64 46 266

6 . 7

All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.

Server agnostic DNS augmentation using eBPF
A master thesis by Tom Carpay (supported by NLnet
Labs)

eBPF Query-Name rewriting
In-Kernel DNS server agnostic response rate limiting (RRL)

https://www.nlnetlabs.nl/downloads/publications/DNS-
augmentation-with-eBPF.pdf

All content © 2021 Internet Systems Consortium, Inc.

6 . 8

https://www.nlnetlabs.nl/downloads/publications/DNS-augmentation-with-eBPF.pdf

All content © 2021 Internet Systems Consortium, Inc.

Instrumenting BIND 9

7 . 1

All content © 2021 Internet Systems Consortium, Inc.

Use case -> Forward logging
A BIND 9 DNS resolver has forward zones configured:

The BIND 9 logging subsystem, while very powerful,
does not support the logging of forwarding decisions
Goal: Create a bpftrace script that writes out BIND 9
forwarding decisions

zone "dnslab.org" {
 type forward;
 forwarders { 1.1.1.1; 8.8.8.8; };
};

7 . 2

All content © 2021 Internet Systems Consortium, Inc.

Step 1 - Use the force source
The BIND 9 source code is public, available on the ISC
gitlab service
A search through the source for forwarding finds the
function dns_fwdtable_find in
/lib/dns/forward.c. This sounds promising:

https://gitlab.isc.org

7 . 3

https://gitlab.isc.org/

All content © 2021 Internet Systems Consortium, Inc.

Step 2 - A proof of concept test
The function dns_fwdtable_find takes a domain
name and returns 0 if the name must be resolved
through forwarding, and a value greater than 0 if not

A quick bpftrace one-liner will validate that this indeed works:
bpftrace -e 'uretprobe:/lib/x86_64-linux-gnu/libdns-9.16.22-Debian.so:dns_fwdtable_find { print(retval)

7 . 4

All content © 2021 Internet Systems Consortium, Inc.

Step 2 - A proof of concept test

7 . 5

All content © 2021 Internet Systems Consortium, Inc.

Step 3 - Planning the probe script
Now we are certain that we have a function to work
with, we write a bpftrace script
The script will

Store the domain name requested from dns_fwdtable_find
when the function is called
Check the return code (retval) of the function when it returns,
and print the domain name when the return value is zero (0), do
nothing otherwise

7 . 6

All content © 2021 Internet Systems Consortium, Inc.

Challenge - Wrangling with structs
The domain name to check for forwarding is given to
the function as a struct of type dns_name_t

It's not a simple pointer to a string that we can print
A search through the

 reveals the structure of dns_name_t.
The 2nd field is unsigned char * ndata, which
looks like the domain name

ISC BIND 9 source code
documentation

7 . 7

https://users.isc.org/~each/doxygen/bind9/structdns__name.html

All content © 2021 Internet Systems Consortium, Inc.

Challenge - Wrangling with structs
The definition of dns_name_t can be found in
lib/dns/include/dns/name.h

7 . 8

All content © 2021 Internet Systems Consortium, Inc.

Challenge - Wrangling with structs
bpftrace uses a syntax similar to the C programming
language, we can import the struct from the BIND 9
source code into the script

we don't need the linked list and the isc_buffer_t fields for our
script, and these are not native types, so we comment these lines
out

#!/usr/bin/bpftrace

struct dns_name {
 unsigned int magic;
 unsigned char *ndata;
 unsigned int length;
 unsigned int labels;
 unsigned int attributes;
 unsigned char *offsets;
// isc_buffer_t *buffer;
// ISC_LINK(dns_name_t) link;
// ISC_LIST(dns_rdataset_t) list;
};
[...]

7 . 9

All content © 2021 Internet Systems Consortium, Inc.

Printing a message at probe start
The BEGIN pseudo-probe fires at the start of the script
and prints a message, informing the user that the
script has been started

[...]
BEGIN
{
 print("Waiting for forward decision...\n");
}
[...]

7 . 10

All content © 2021 Internet Systems Consortium, Inc.

Probing the function call
This probe fires when the function is called

it's a uprobe (User-Space probe)
the function to be probed is dns_fwdtable_find in the dynamic
library /lib/x86_64-linux-gnu/libdns-9.16.22-
Debian.so
The 2nd argument to the call (arg1) is cast into a struct
dns_name, and then the field ndata is referenced
This data is stored into the variable @dns_name[tid] indexed by
the thread ID (tid) of the running thread

[...]
uprobe:/lib/x86_64-linux-gnu/libdns-9.16.22-Debian.so:dns_fwdtable_find
{
 @dns_name[tid] = ((struct dns_name *)arg1)->ndata
}
[...]

7 . 11

All content © 2021 Internet Systems Consortium, Inc.

Probing the function exit
The 3rd probe is firing at function exit (uretprobe - User-space
function return probe)

Same library and function as before
If the return value of the function is zero 0 (domain name needs to be
forwarded), the stored data in @dns_name[tid] is converted into a
string and printed out
The variable @dns_name[tid] is deleted as it's not needed any
longer

uretprobe:/lib/x86_64-linux-gnu/libdns-9.16.22-Debian.so:dns_fwdtable_find
{
 if (retval == 0) {
 printf("Forwarded domain name: %s\n", str(@dns_name[tid]));
 }
 delete(@dns_name[tid]);
}

7 . 12

All content © 2021 Internet Systems Consortium, Inc.

The final script
#!/usr/bin/bpftrace

struct dns_name {
 unsigned int magic;
 unsigned char *ndata;
 unsigned int length;
 unsigned int labels;
 unsigned int attributes;
 unsigned char *offsets;
// isc_buffer_t *buffer;
// ISC_LINK(dns_name_t) link;
// ISC_LIST(dns_rdataset_t) list;
};

BEGIN
{
 print("Waiting for forward decision...\n");
}
uprobe:/lib/x86_64-linux-gnu/libdns-9.16.22-Debian.so:dns_fwdtable_find
{
 @dns_name[tid] = ((struct dns_name *)arg1)->ndata
}

uretprobe:/lib/x86_64-linux-gnu/libdns-9.16.22-Debian.so:dns_fwdtable_find
{
 if (retval == 0) {
 printf("Forwarded domain name: %s\n", str(@dns_name[tid]));
 }
 delete(@dns_name[tid]);
}

7 . 13

All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.

The script in operation
The script fires whenever a domain name is to be
forwarded

In this example, all queries for the domain dnslab.org are
forwarded, but not ietf.org

All content © 2021 Internet Systems Consortium, Inc.

7 . 14

All content © 2021 Internet Systems Consortium, Inc.

Packet Filtering with eBPF

8 . 1

All content © 2021 Internet Systems Consortium, Inc.

eBPF as a network firewall
eBPF can be a very efficient firewall

It can stop network packets before they enter the Linux TCP/IP
stack or the userspace application
As eBPF runs full programs, the firewall can work on complex
rules

DNS query names
DNSSEC data in answers
Source IP of nameserver
EDNS data (prioritize DNS messages with DNS cookies)
…

8 . 2

All content © 2021 Internet Systems Consortium, Inc.

Example: Block-Non-DNS
In the Hands-On part of this training, we show a
simple eBPF network filter

Block all UDP traffic towards a network interface except DNS (Port
53)
Helps in non-DNS DDoS attacks against an authoritative DNS
server

8 . 3

All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.

Example: XDP Firewall
The XDP Firewall is a new project to create a firewall
tool leveraging XDP

Example rule-set to block all DNS traffic on Port 53
https://github.com/gamemann/XDP-Firewall

interface = "eth0";
updatetime = 15;

filters = (
 {
 enabled = true,
 action = 0,
 udp_enabled = true,
 udp_dport = 53
 }
);

All content © 2021 Internet Systems Consortium, Inc.

8 . 4

https://github.com/gamemann/XDP-Firewall

All content © 2021 Internet Systems Consortium, Inc.

Literature and Links

9 . 1

All content © 2021 Internet Systems Consortium, Inc.

Book: Linux Observability with BPF
By David Calavera, Lorenzo Fontana (November

2019)

9 . 2

All content © 2021 Internet Systems Consortium, Inc.

Book: Systems Performance (2nd ed.)
By Brendan Gregg (December 2020)

9 . 3

All content © 2021 Internet Systems Consortium, Inc.

Book: BPF Performance Tools
By Brendan Gregg (December 2019)

9 . 4

All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.All content © 2021 Internet Systems Consortium, Inc.

Links
For the webinar we have a extensive list of links that
can be found at
https://webinar.defaultroutes.de/webinar/08-ebpf-
links.html

All content © 2021 Internet Systems Consortium, Inc.

9 . 5

https://webinar.defaultroutes.de/webinar/08-ebpf-links.html

All content © 2021 Internet Systems Consortium, Inc.

Next webinars

December 15 - DNS Fragmentation: Real-World
measurements, impact and mitigation

All content © 2021 Internet Systems Consortium, Inc.

10 . 1

All content © 2021 Internet Systems Consortium, Inc.

Questions and Answers

All content © 2021 Internet Systems Consortium, Inc.

11 . 1

All content © 2021 Internet Systems Consortium, Inc.

Hands-On

We have prepared a VM machine for every participant
Find the instructions at
https://webinar.defaultroutes.de/webinar/08-ebpf-
workshop.html

All content © 2021 Internet Systems Consortium, Inc.

12 . 1

https://webinar.defaultroutes.de/webinar/08-ebpf-workshop.html

